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How to mesh up Ewald sums. II. An accurate error estimate
for the particle–particle–particle-mesh algorithm

Markus Deserno and Christian Holm
Max-Planck-Institut fu¨r Polymerforschung, Ackermannweg 10, 55128 Mainz, Germany

~Received 23 June 1998; accepted 6 August 1998!

We construct an accurate estimate for the root mean square force error of the particle–particle–
particle mesh~P3M) algorithm by extending a single particle pair error measure which has been
given by Hockney and Eastwood. We also derive an easy to use analytic approximation to the error
formula. This allows a straightforward and precise determination of the optimal splitting parameter
~as a function of system specifications and P3M parameters! and hence knowledge of the force
accuracy prior to the actual simulation. The high quality of the estimate is demonstrated in several
examples. ©1998 American Institute of Physics.@S0021-9606~98!51642-X#
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INTRODUCTION

The combination of periodic boundary conditions a
long range interactions is a frequent difficulty encountered
computer simulations of physical systems, and the ingen
summation technique connected with the name of Ewa1

has become a standard instrument for tackling this probl
However, it has long been realized that for rather extens
simulations~involving, e.g., many particles! this approach is
still too time consuming and various alternative metho
have been invented. One particular class of these new a
rithms owes its speedup to an inspired replacement of
Fourier transformation — which lies at the heart of t
Ewald technique — by fast Fourier transform~FFT!
routines.2–4

In paper I on mesh based Ewald sums5 we presented a
unified view of these FFT accelerated methods and car
out detailed accuracy measurements. However, since
these algorithms contain various free parameters, workin
the maximally obtainable accuracy requires the user to t
them very carefully. This is straightforward if there exists
theoretical estimate of the errors involved — as is the c
for the standard Ewald sum6 as well as for the so-called
particle mesh Ewald~PME! method7 — but rather tedious
otherwise.

In this paper we present such an estimate for the r
mean square error in the force of the so-called partic
particle–particle mesh~P3M! algorithm by extending an
error measure already derived by Hockney and Eastwo2

and additionally provide an easy to use analytical appro
mation to the somewhat unwieldy expression compris
various sums.

EWALD SUM AND P 3M IN A NUTSHELL

In this section we outline for reference purposes
most important formulas for the P3M method without much
explanation, derivation or motivation. For details the rea
is referred to the original P3M literature2 as well as paper I.

Consider a system ofN particles with chargesqi at po-
sitionsr i in an overall neutral cubic simulation box of leng
7690021-9606/98/109(18)/7694/8/$15.00
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L. Employing the Ewald sum, the forceFi on particle i ,
which results from all interactions with the other charg
~including all periodic images!, can be written in the follow-
ing way:

Fi5Fi
~r !1Fi

~k!1Fi
~d! . ~1!

The so-called real space, Fourier space and dipole contr
tions are, respectively, given by

Fi
~r !5qi(

j
qj (

mPZ3

8 S 2a

Ap
exp~2a2ur i j 1mLu2!

1
erfc~aur i j 1mLu!

ur i j 1mLu D r i j 1mL

ur i j 1mLu2
, ~2!

Fi
~k!5

qi

L3(j
qj (

kÞ0

4pk

k2
expS 2

k2

4a2D sin~k–r i j !, ~3!

Fi
~d!52

4pqi

~112e8!L3(j
qj r j . ~4!

The prime on the second sum in Eq.~2! indicates that fori
5 j the term m50 has to be omitted, erfc(r )
ª2p21/2* r

`dt exp(2t2) is the complementary error functio
and of courser i j 5r i2r j . Furthermore, the inverse lengtha
is thesplitting parameterof the Ewald sum, which controls
the relative importance of the contributions coming from re
and reciprocal space, thek-vectors are from the discrete s
(2p/L)Z3 and e8 is the dielectric constant of the medium
which surrounds the cluster of simulation boxes as it te
~in a spherical way! toward an infinite system. In practice
the infinite sums in Eqs.~2! and ~3! are truncated by only
taking into account distances which are smaller than so
real space cutoffr max and wave vectors with a modulu
smaller than some reciprocal space cutoffkmax.

The P3M method offers a fast way for an approxima
computation of the reciprocal space contribution~3!. By
mapping the system onto a mesh, the necessary Fo
4 © 1998 American Institute of Physics
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transformations can be accomplished by fast Fourier r
tines. At the same time the simple Coulomb Green funct
4p/k2 is adjusted as to make the result of the mesh calc
tion most closely resemble the continuum solution.

The first step, i.e., generating the mesh based ch
density rM ~defined at the mesh pointsr p), is carried out
with the help of a charge assignment functionW:

rM~r p!5
1

h3(i 51

N

qiW~r p2r i !. ~5!

Hereh is the mesh spacing, and the number of mesh po
NM5L/h along each direction should preferably be a pow
of two, since in this case the FFT is most efficient. T
charge assignment function is classified according to its
der P, i.e., between how many grid points — per coordina
direction — each charge is distributed. In the P3M method
introduced by Hockney and Eastwood2 its Fourier transform
is

W̃~k!5h3 S sinS 1

2
kxhD

1

2
kxh

sinS 1

2
kyhD

1

2
kyh

sinS 1

2
kzhD

1

2
kzh

D P

.

~6!

In a second step the mesh based electric fieldE(r p) is
calculated. Basically, the electric field is the derivative of t
electrostatic potential, but there exist several alternatives
implementing the differentiation on a lattice.5 In this paper
we will restrict ourselves to the case ofik-differentiation,
which works by multiplying the Fourier transformed pote
tial with ik. In this caseE(r p) can be written as

E~r p!5FFT
←

@2 ik3FFT
→

@rM#3Ĝopt#~r p!. ~7!

In other words,E(r p) is the backwardfinite Fourier trans-
form of the product of2 ik, the forward finite Fourier trans-
form of the mesh based charge densityrM and the so-called
optimal influence functionĜopt, given by

Ĝopt~k!5

D̃~k!• (
mPZ3

Ũ2S k1
2p

h
mD R̃S k1

2p

h
mD

uD̃~k!u2F (
mPZ3

Ũ2S k1
2p

h
mD G2 ,

~8!

with

R̃~k!ª2 ik
4p

k2
e2k2/4a2

~9!

and

Ũ~k!ªW̃~k!/h3. ~10!

Here D̃(k) is the Fourier transform of the employed diffe
entiation operator, which is simplyik in our case. Finally,
one arrives at the force on particlei , i.e., the replacement o
Eq. ~3!:
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Fi5qi (
rpPM

E~r p!W~r i2r p!. ~11!

Hereby the sum extends over the complete meshM.
Although the presented formulas~5!–~11! look some-

what complicated, it is rather easy to implement them step
step. Furthermore, due to the replacement of the Fou
transforms by FFT routines@see Eq.~7!#, the algorithm is not
only fast but its CPU time shows a favorable scaling w
particle number: If the real space cutoffr max is chosen small
enough@so that the real space contribution~2! can be calcu-
lated in orderN], the complete algorithm is essentially o
orderN logN.

SCALING OF THE rms FORCE ERROR

In this section we address the dependence of the
mean square error in the force on the number of char
particles and their valence. Since the assumptions and a
ments involved are of a rather general nature, the result is
specific to a certain kind of Ewald method.

We define the rms error in the force to be

DFªA1

N(
i 51

N

~Fi2Fi
exa!25:A1

N(
i 51

N

~DFi !
2, ~12!

whereFi is the force on particlei calculated by the algorithm
under investigation andFi

exa is the exact force on that par-
ticle. Note that this is by no means the only interesting m
sure of accuracy. However, it is the only one which is co
sidered in this paper.

We now assume that the error in the force on particli
can be written as

DFi5qi(
j Þ i

qj xi j . ~13!

The idea behind this ansatz is that — just as it is true forFi

— the error in Fi originates from theN21 interactions of
particlei with the other charged particles, and each contrib
tion should be proportional to the product of the two charg
involved. The vectorxi j gives the direction and magnitude o
this error for two unit charges and depends on their sep
tion and orientation as well as on the specific algorithm u
for calculating the electrostatic forces. For this term we f
ther assume

^xi j –xik&5d jk^xi j
2 &5:d jk x2, ~14!

where averaging over the particle configurations is deno
by the angular brackets. The underlying assumption that c
tributions from different particles are uncorrelated is c
tainly not always true~think, e.g., of highly ordered or
strongly inhomogeneous particle distributions!, but it is sen-
sible for randomsystems. Obviously, the term̂xi j

2 & — the
mean square force error for two unit charges — can
longer depend oni and j and is thus written asx2. Using
Eqs.~13! and ~14!, it follows

^~DFi !
2&5qi

2(
j Þ i

(
kÞ i

qjqk^xi j –xik&'qi
2 x2Q 2 ~15!

where the important quantityQ 2 is defined as
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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Q 2
ª(

j 51

N

qj
2. ~16!

Not all particles necessarily have the same charge. M
specifically, let there beP subsetsNp , defined by the condi-
tion that all uNpu particles from the subsetNp have the same
chargecp . If uNpu@1, the law of large numbers8 and Eq.
~15! gives

1

uNpu (i PNp

~DFi !
2'^~DFi !

2& i PNp
'cp

2 x2Q 2, ~17!

i.e., the arithmetic meanof the (DFi)
2 for all particles i

PNp can be approximated by theensemble averagefor one
particle from Np . In the case whereall uNpu are large, it
follows

1

N(
i 51

N

~DFi !
25 (

p51

P uNpu
N S 1

uNpu (i PNp

~DFi !
2D

'x2
Q 2

N (
p51

P

uNpucp
25x2

Q 4

N
. ~18!

Inserting this into Eq.~12! gives the final relation

DF'x
Q 2

AN
. ~19!

Thus, the scaling of the rms error in the force with partic
number and valence is given by the factorQ 2N21/2, whereas
the prefactorx — which cannot be obtained by such simp
arguments — contains the details of the method. Indeed,
estimates for the real and reciprocal space error of the s
dard Ewald sum6 as well as the estimate for the reciproc
space error of the PME method7 are exactly of the form~19!.
Note that any information on the valence distribution ent
only through the value ofQ 2.

THE ERROR MEASURE OF
HOCKNEY AND EASTWOOD

The most interesting ingredient of the P3M method is the
optimal influence function from Eq.~8!. It is constructed
such that the result of the mesh calculation is as close
possible to the solution of the original continuum proble
Of course, this is only realizable in a quantitative way, if t
notion of ‘‘as close as possible’’ is stated more precise
Hockney and Eastwood define the following measure of
error involved in a P3M calculation:

Qª

1

h3Eh3
d3r 1E

L3
d3r @F~r ;r1!2R~r !#2. ~20!

F(r ;r1) is the Fourier space contribution of the force b
tween two unit charges at positionsr1 and r11r as calcu-
lated by the P3M method~note that due to broken rotationa
and translational symmetry this does in fact depend on
coordinates ofbothparticles!, andR(r ) is the corresponding
exact reference force@whose Fourier transform is just Eq
~9!#. The inner integral overr scans all particle separation
whereas the outer integral overr1 averages over all possibl
locations of the first particle within a mesh cell. Obvious
Downloaded 22 Apr 2005 to 134.253.26.9. Redistribution subject to AIP
re

he
n-

l

s

as
.

.
e

-

e

up to a factorL23 this expression is just the mean squa
error in the force for two unit charges, in other words, t
quantity x2 from Eq. ~14!. This provides a link between
the rms error of anN particle system and the errorQ from
Hockney and Eastwood: Using Eq.~19! one obtains

DF'Q 2A Q

NL3
. ~21!

Technically spoken,Q is a functional of the influence
function, and by setting the functional derivative ofQ with
respect toĜ to zero Hockney and Eastwood were able
derive the optimal influence function from Eq.~8!. However,
it is most important to realize that they also provide a clos
expression for the corresponding ‘‘optimal error’’Qopt

5Q@Ĝopt#:

Qopt5
1

L3 (
kPM̂ 5 (

mPZ3
UR̃S k1

2p

h
mD U2

2

UD̃~k!– (
mPZ3

Ũ2S k1
2p

h
mD R̃* S k1

2p

h
mDU2

uD̃~k!u2F (
mPZ3

Ũ2S k1
2p

h
mD G2 6 .

~22!

The outer sum extends over allk-vectors of the Fourier
transformed meshM̂, and the star denotes complex conjug
tion. Once again, in the special case ofik-differentiation one
hasD̃(k)5 ik.

Admittedly, Eq. ~22! looks rather complicated. Still, in
combination with Eq.~21! it gives the rms force error of the
P3M method ~or — more precisely — of its Fourier spac
contribution!! ~After all, the computation ofQopt and that of
Ĝopt are quite similar.! We would like to emphasize that th
formula~22! for the optimalQ value@just like the one for the
optimal influence function~8!# is of a very general nature: I
does also work for different charge assignment functio
reference forces or any differentiation scheme which can
expressed by an operatorD̃(k), in particular for all the finite
difference schemes presented in paper I.

The corresponding rms error in the force from the re
space contribution~2! has been derived by Kolafa an
Perram6 and we want to provide it here for reference pu
poses:

DF ~r !'
2Q 2

ANrmaxL
3

exp~2a2r max
2 !. ~23!

With these two estimates at hand it is easy to determine
optimal value of the splitting parametera via a stand-alone
program, which takes the relevant system parametersN,
Q 2, L) and specifications of the algorithm (r max, NM , P) as
its input. If real and reciprocal space contribution to the
ror, DF (r ) andDF (k), respectively, are assumed to be stat
tically independent, the total error is given by
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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TABLE I. Expansion coefficientscm
(P) for the functionsf (P) from Eqs.~26! and ~29! as needed in Eq.~30!.

P c0
(P) c1

(P) c2
(P) c3

(P) c4
(P) c5

(P) c6
(P)

1 2
3

2 2
45

8
189

3 4
945

2
225

8
1485

4 2
4725

16
10 395

5528
3 869 775

32
42 525

5 4
93 555

2764
11 609 325

8
25 515

7234
32 531 625

350 936
3 206 852 775

6 2764
638 512 875

16
467 775

7234
119 282 625

1 403 744
25 196 700 375

1 396 888
40 521 009 375

2 485 856
152 506 344 375

7 8
18 243 225

7234
1 550 674 125

701 872
65 511 420 975

2 793 776
225 759 909 375

1 242 928
132 172 165 125

1 890 912 728
352 985 880 121 875

21 053 792
8 533 724 574 375
in

a

he

s
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in
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em
-

e
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to
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g
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We
s

r

f
al-

ets
DF5A~DF ~r !!21~DF ~k!!2. ~24!

This quantity has to be minimized with respect toa. How-
ever, in most cases it is accurate enough to use the follow
approximation: Determine the value ofa at which the real
and reciprocal space contribution to the rms force error
equal.

ANALYTIC APPROXIMATION

Although the closed expression for the error from t
last section is not reallycomplicated, it is somewhatun-
wieldy. A possible calculation of the optimal value ofa us-
ing, e.g., a bisection method needs several computation
Qopt and for each it is necessary to compute the inner al
ing sums and the outer sum over thek-vectors. Especially for
large Fourier meshes this can be rather time consum
Therefore we now derive an analytic approximation to t
error estimate, which is essentially anexpansion for small
ha. We will restrict ourselves to the case of a cubic syst
and the same numberNM of mesh points along each direc
tion. Also, we will only treat the case ofik-differentiation
@see Eq.~7!#, since we found5 that this is the most accurat
method. However, our line of reasoning can be extende
more general cases.

We start our treatment of Eq.~22! by observing that two
of the three sums overZ3 contain R̃ with its exponential
factor exp(2k2/4a2). Since near the boundary ofM̂ its value
is roughly given by exp(2(p/ha)2), R̃ is strongly damped
outsideM̂ if ha is small. Thus, it is a good approximation
retain only the term withm50 in these two sums. Insertin
D̃(k)5 ik, the Fourier transform of the charge assignm
function from Eq. ~5! and using the fact that sin2(x1np)
5sin2(x) for integraln, one obtains

Qopt'
~4p!2

L3 (
kPM̂

e2k2/2a2

k2

3H 12 f ~P!S kxh

2 D f ~P!S kyh

2 D f ~P!S kzh

2 D J ~25!
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with the functionf (P) defined as

f ~P!~x!ª
x24P

S (
mPZ

~x1mp!22PD 2 . ~26!

In a second step the aliasing sum in the denominator of
~26! is evaluated analytically by exploiting the followin
partial fraction expansion:9

sin22~x!5 (
mPZ

~x1mp!22, xPR\pZ. ~27!

Differentiating this expression 2P22 times gives

(
mPZ

~x1mp!22P5
1

~2P21!!

d2P22

dx2P22
sin22~x!. ~28!

This equation leads to a closed expression for the func
f (P) from Eq. ~26!:

f ~P!~x!5
@~2P21!! #2

x4P S d2P22

dx2P22
sin22~x!D 22

. ~29!

Unfortunately the sum overM̂ is still too complicated to
perform, so some further approximations are necessary.
choose the following way:f (P) is expanded in a Taylor serie
up to order 4P22. Since~i! f (P) is an even function,~ii !
f (P)(0)51 and ~iii ! the lowest nontrivial term is of orde
x2P, this expansion can be written as

f ~P!~x!' f T
~P!~x!ª12x2P (

m50

P21

cm
~P! x2m. ~30!

The coefficientscm
(P) are easily determined with the help o

any mathematical computer program capable of symbolic
gebra and are listed in Table I. The term in curly brack
from Eq. ~25! can now be approximated as follows:
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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TABLE II. Expansion coefficientsam
(P) from Eq. ~37!.

P a0
(P) a1

(P) a2
(P) a3

(P) a4
(P) a5

(P) a6
(P)

1 2
3

2 1
50

5
294

3 1
588

7
1440

21
3872

4 1
4320

3
1936

7601
2 271 360

143
28 800

5 1
23 232

7601
13 628 160

143
69 120

517 231
106 536 960

106 640 677
11 737 571 328

6 691
68 140 800

13
57 600

47 021
35 512 320

9 694 607
2 095 994 880

733 191 589
59 609 088 000

326 190 917
11 700 633 600

7 1
345 600

3617
35 512 320

745 739
838 397 952

56 399 353
12 773 376 000

25 091 609
1 560 084 480

1 755 948 832 039
36 229 939 200 000

4 887 769 399
37 838 389 248
lt

i
e
e
.

d

to

t

f

n
ti-

act

ald
d in
d

on-
12 f ~P!S kxh

2 D f ~P!S kyh

2 D f ~P!S kzh

2 D
'S 12 f T

~P!S kxh

2 D D1S 12 f T
~P!S kyh

2 D D1S 12 f T
~P!S kzh

2 D D .

~31!

The product of the three functionsf (P) is computed by mul-
tiplying their Taylor expansions term by term, but the resu
are only retained up to the truncation order 4P22. Note that
the first neglected cross term would be of order 4P.

For symmetry reasons it is clear that all three terms
the last line of Eq.~31! contribute in the same way to th
value of the sum in Eq.~25!, therefore it suffices to choos
one of them, e.g., thez term, and multiply the result by 3
Together with the definition off T

(P) from Eq. ~30! this leads
to

Qopt'3
~4p!2

L3 (
kPM̂

e2k2/2a2

k2 (
m50

P21

cm
~P!S kzh

2 D 2~P1m!

. ~32!

Finally, the sum is replaced by an integral via

S 2p

L D 3

(
k
→E d3k. ~33!

If one extends the range of integration toR3 and changes to
spherical polar coordinates, the remaining angular and ra
integrals can be performed with the help of

E
0

p

dq sinq cos2n q5
2

2n11
, nPN ~34!

and

E
0

`

dx x2ne2x2
5

Ap ~2n21!!!

2n11
, nPN ~35!

where (2n21)!! 51•3•5•••(2n21). Collecting all parts
together gives
Downloaded 22 Apr 2005 to 134.253.26.9. Redistribution subject to AIP
s
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Qopt'A2p a ~ha!2P (
m50

P21

am
~P!~ha!2m ~36!

with the abbreviation

am
~P!

ª12
~2~P1m!21!!!

2~P1m!11
222~P1m! cm

~P! . ~37!

Combining this with Eq.~21! results in the following
analytical approximation to the Fourier space contribution
the rms force error of the P3M algorithm:

DF'
Q 2

L2
~ha!PAaL

N
A2p (

m50

P21

am
~P!~ha!2m. ~38!

The exact expansion coefficientsam
(P) ~which are rational

numbers! are listed in Table II.
Let us repeat that Eq.~38! was derived under the explici

assumption thatha is small. Both, the restriction to the term
m50 for two sums in Eq.~22! as well as the expansion o
the function f (P) from Eqs.~26! and ~29! in powers ofha
can become questionable ifha becomes large. However, i
this case it is still safe to go back to the original error es
mate, i.e., the combination of Eqs.~21! and ~22!.

NUMERICAL TEST

In this section we demonstrate the accuracy of the P3M
error estimates by comparing their predictions with the ex
rms force errorDF from Eq.~12! — calculated for a specific
random system. Hereby the exact forcesFi needed for com-
putingDF are obtained by a well converged standard Ew
sum, and for the test system we choose the one describe
Appendix D of paper I: 100 particles randomly distribute
within a cubic box of lengthL510, half of them carry a
positive, the other half a negative unit charge. Our unit c
ventions are as follows:5 lengths are measured inL and
charges inC. Hence the unit of force isC 2/L 2. We will
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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refer to the estimate which emerges from combining E
~21! and ~22! as the full estimateand to Eq.~38! as the
analytical approximation.

In a first example we fix the number of mesh points
NM532 and the real space cutoff tor max54. The charge
assignment order varies fromP51 throughP57. In Fig. 1
the resulting curves for the rms force errorDF are plotted
together with the full error estimate and in Fig. 2 the same
done for the analytical approximation. It can be seen v
clearly that the full estimate accurately predicts the Fou
space contribution toDF for all values ofa andP. Since the
real space contribution is also known6 @see also Eq.~23!#,
this permits an easy determination of the optimal value of
splitting parametera. The analytical approximation is al
most as accurate as the full formula, however, for largeP it
diminishes in accuracy ifa gets large. This is due to the fac
that Eq.~38! was derived under the assumption thatha is
small. Note that the expansion coefficientsam

(P) needed in
Eq. ~38! strongly increase with increasingm if P gets larger
~see Table II!. Still, both estimates are useful for determinin
the optimal operation point, and Eq.~38! can be calculated
much faster than the sums from Eq.~22!.

Next we study at fixed charge assignment orderP53
different mesh sizesh5L/NM by investigating NM

FIG. 1. The rms errorDF ~solid lines! for the system of 100 randomly
distributed charges is calculated for theik-differentiated P3M method with
NM532 mesh points and real space cutoffr max54. From top to bottom the
order of the charge assignment function is increased from 1 to 7. The d
lines are the corresponding full estimates@using Eqs.~21! and~22!# for the
Fourier space contribution toDF.

FIG. 2. The same plot as in Fig. 1, but here the dotted lines are the an
cal estimates from Eq.~38!. Note that for largeP the errorDF is overesti-
mated at large values ofa.
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P$4,8,16,32,64,128%. Figures 3 and 4 showDF in compari-
son with the full and the approximated error estimate,
spectively. Again, it can be seen that the former very ac
rately gives the Fourier space contribution toDF. As
expected, the analytical approximation has problems at sm
NM ~since this results in largeh), but nevertheless it is very
useful otherwise. Essentially, one has to check the value
ha: If this is of the order unity or even larger, care is calle
for. Note that in Fig. 4 the value ofha is approximately 1 at
the points where the analytical approximation starts to de
ate from the true curve.

In a next step we want to demonstrate that the scaling
the rms force error with particle number and valence dis
bution is in fact correctly given byDF}Q 2N21/2. To this
end we investigate three systems which differonly in the
values ofQ 2 andN. The first system is the same as the o
investigated so far in Figs. 1–4. A second system conta
200 particles, namely, 50 monovalent and 50 trivalent pa
Finally, a third system contains 400 particles: 50 pairs w
charge61, 100 pairs with charge65 and 50 pairs with
charge67. Hence, their (Q 2,N) values are, respectively
given by ~100,100!, ~1000,200! and ~10 000,400!, and the
ratio of their scaling prefactors is thus 1:A50:50. In Fig. 5
this is clearly visible in the constant shift of the three curv
with respect to one another~note that the vertical scale i

ed

ti-

FIG. 3. DF ~solid lines! for the same system as in the previous figures
calculated for theik-differentiated P3M method with charge assignmen
orderP53 and real space cutoffr max54. From top to bottom the number o
mesh points varies like 4, 8, 16, 32, 64, 128. The dotted lines are
corresponding full error estimates.

FIG. 4. The same plot as in Fig. 3, but here the dotted lines are the ana
cal estimates from Eq.~38!. At small NM , which corresponds to large val
ues ofh5L/NM , the error formula overestimatesDF at large values ofa.
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logarithmic!. Also shown is the full error estimate, whic
again predicts the Fourier space contribution toDF in all
three cases very precisely.

APPLICATION TO AN INHOMOGENEOUS
POLYELECTROLYTE SYSTEM

So far we have only used homogeneous random syst
for testing the error estimates. However, this does not ne
sarily reflect the situation encountered in all computer
periments. In the present section we want to show that
viations from a random distribution, as they frequently occ
in charged systems, in fact have a noticeable influence on
rms error.

We will use a typical system from our own research
demonstrate this effect: a simple model of a polyelectrol
solution.10,11 106 Lennard–Jones particles were joined~by
some bonding potential! to build up a polymer chain. Every
third ‘‘monomer’’ was monovalently charged and 8 su
chains together with 96 trivalent and oppositely charg
counterions, which make the complete system electric
neutral, were put in a cubic simulation box of lengthL
'179. The system was brought into the canonical state
means of a molecular dynamics simulation and a Lange
thermostat.

Under certain circumstances~e.g., at sufficiently low
temperature and the appropriate density range! such poly-
electrolyte chains collapse, and this happened to the
scribed system. The chain sizes shrunk to much smaller
ues than for comparable neutral polymers and 90% of
counterions were condensed within a distance of only
Lennard-Jones radii from the nearest chain.

The various phenomena leading to this transition,
influence of the system parameters or the dynamics are
a few of the interesting physical questions. However,
only thing which concerns us here is the fact that after
transition the system has developed local inhomogenei
To demonstrate this we have plotted in Fig. 6 the measu
relative frequencyp(r /L) of the scaledminimum image dis-
tance r/LP@0;A3/2# between two charges~we did not dis-
tinguish between different valences! and compared this to
the probability density ofr /L for a random system. The dif

FIG. 5. Test of theQ 2N21/2 scaling ofDF. The three solid lines show the
rms force errorDF for systems, which differ in their (Q 2,N) values. From
top to bottom they are characterized by~10 000,400!, ~1000,200! and
~100,100! ~the last system is the same as the one in Figs. 1–4!. The dotted
curves are the corresponding full error estimates.
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ferences are indeed very pronounced. Apart from the m
complicated structure of the measured curve, note in part
lar that small separations are more frequent at the expens
larger ones.

For this system we calculated the rms force errorDF
and the corresponding estimates for the real and recipr
space contribution@Eqs. ~23!, ~21!, ~22!#. Since the simula-
tion box comprises 288 monovalent and 96 trivalent charg
we haveN5384 andQ51152. The result is shown in Fig. 7
No longer do the estimates correctly predict the two branc
of DF. Rather, at small values ofa the algorithm gives
better results than expected from Eq.~23!, while at large
values ofa the estimatedDF is smaller than the actual one
However, this trend can be explained qualitatively in t
following way: At small values ofa the force~and also its
error! is dominated by the real space contribution from E
~2!. This error originates from neglected contributions b
yond the real space cutoffr max. In the case of Fig. 7 we use
r max/L'0.243 and from Fig. 6 it can be seen that there
more particles within this cutoff~and thus less beyond! than
in the case of a random particle distribution, which shou
lead to an enhanced real space accuracy. On the other h
we demonstrated previously~see Fig. 7 of paper I that the

FIG. 6. Measured relative frequencyp(r /L) for the scaled minimum image
separationr /L between two charges of the polyelectrolyte system descri
in the text~the solid line!. For comparison, the probability density ofr /L for
a random system is also shown~the dashed line!.

FIG. 7. rms force errorDF for the polyelectrolyte system described in th
text ~the solid line!. The dotted curve is the full P3M estimate for the recip-
rocal space contribution, the dashed curve is the estimate for the real s
contribution. Note that due to the strong inhomogeneities in the cha
distribution~see Fig. 6! both estimates show systematic deviations from t
true error curve.
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rms error of the P3M method strongly increases with de
creasing minimum image distance. The general shift tow
smallerr , which can be observed in the polyelectrolyte sy
tem, should thus lead to an enlarged reciprocal space e
Observable effects will occur at large values ofa, where this
contribution toDF dominates.

Although the systematic deviations of the error estima
from the true curve are easily detectable, they are less
matic than one could have guessed from a brief look at F
6. The optimal splitting parameter from Fig. 7 is given
aopt'0.0715 with a correspondingDFopt'1.231026, while
the intersection point of real and reciprocal space estim
occurs ata'0.0740, which predicts an error ofDF'9.3
31027. If the estimated value ofa had been used, thi
would result in an error ofDF'1.531026, which is roughly
25% larger than at the optimal value ofa. If such a safety
margin is considered already at the beginning, thea priori
determination of the ‘‘optimal’’ value ofa by means of Eqs.
~21!–~23! together with ana posteriorivalidity check is still
a good approach.

In any case, if one knows or at least has reasons
suspect that the investigated system is susceptible to the
velopment of inhomogeneities, one should always be aw
of a potential failure of the presented error formulas. In c
of doubt, some simple numerical tests — like, e.g., the o
which we have performed here — are neither out of pla
nor costly.

CONCLUSIONS

We have presented an accurate estimate of the root m
square error in the force involved in a P3M calculation and
additionally derived an easy to use analytic approximat
for the special case ofik differentiation. Together with the
existing estimate for the real space contribution to the r
force error this permits a determination of the optimal tun
parametera and provides information on the accuracy whi
is to be expected. It thus guarantees that one does not w
accuracy which could otherwise be achieved at the sa
computational effort. Stated the other way around: It p
vents one from spending more computational effort fo
desired algorithmic accuracy than actually necessary.
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In paper I we showed that theik-differentiated P3M
method is the most accurate algorithm for the FFT acce
ated Ewald sum.5 In combination with the error estimate
this gives a ‘‘package’’ for calculating electrostatic intera
tions in periodic boundary conditions which is easy to u
very precise, produces known and controllable errors and
thus be optimally tuned in advance. If one wishes to rely
the discrete differentiation operators,5 the full error formula
~21! and ~22! will still work. It is only in the case of the
analytic differentiation scheme4 that none of the present erro
estimates is applicable.

As a last point, we stressed several times that the vali
of the error estimates is subject to some additional requ
ments, concerning, e.g., the homogeneity of the system. N
ertheless, it should be obvious that in any case a consulta
of the error formulas — perhaps only for a first starting po
— is superior to guessing the parameters or the use oa
values which were historically handed down. The difficulti
of the analytical approximation~38! at large values ofha are
not a serious problem anyway, since in case of doubt one
always go back to the full estimate.

ACKNOWLEDGMENTS

Both authors are grateful to K. Kremer for encourag
ment and helpful comments. C.H. further thanks the DFG
financial support. A large amount of computer time was g
erously provided by the HLRZ Ju¨lich under Grant No. hkf06.

1P. Ewald, Ann. Phys.~Leipzig! 64, 253 ~1921!.
2R. W. Hockney and J. W. Eastwood,Computer Simulation Using Par-
ticles ~IOP, Bristol, 1988!.

3T. Darden, D. York, and L. Pedersen, J. Chem. Phys.98, 10089~1993!.
4U. Essmann, L. Perera, M. L. Berkowitz, T. Darden, H. Lee, and
Pedersen, J. Chem. Phys.103, 8577~1995!.

5M. Deserno and C. Holm, J. Chem. Phys.109, 7678 ~1998!, preceding
paper.

6J. Kolafa and J. W. Perram, Mol. Simul.9, 351 ~1992!.
7H. G. Petersen, J. Chem. Phys.103, 3668~1995!.
8W. Feller,An Introduction to Probability Theory and Its Applications, 2nd
ed. ~Wiley, New York, 1957!.

9M. Abramowitz and I. A. Stegun,Handbook of Mathematical Functions
~Dover, New York, 1970!.

10C. Holm and K. Kremer, inProceedings of the 50th Yamada Conferen
on Polyeletrolytes, Inuyama, 1998~in press!.

11M. Deserno, C. Holm, K. Kremer, and U. Micka~in preparation!.
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp


